SOUHAIT DES CUIVRES FAIBLEMENT ALLIÉES

L’industrie, principalement l’industrie élec-
trique, utilise de façon courante des cuivres,
désoxydés ou non, auxquels de faibles addi-
tions d’un autre métal procurent des qualités
recherchées sans sacrifier trop important sur
la conductivité électrique. Les plus répandus
de ces cuivres sont:
- le cuivre à l’argent
- le cuivre au cadmium
- le cuivre au tellure
- le cuivre au chrome
- le cuivre au barytium.

Malgré la faible teneur en éléments d’addi-
tion (moins de 2 %), la présence de ceux-ci
modifie sensiblement leur comportement au
soudage.

4.1 CUIVRE À L’ARGENT

La teneur en argent est toujours très faî-
bles, de 0.3 à 0.10 % de sorte que la conduc-
tivité électrique reste forte (98 % IACS). La
température d’adoucissement et de recristal-
lisation de ce cuivre est plus élevée — de
150 °C à la teneur d’environ 0.5 % en argent —
que celle du cuivre pur.

Assaz fréquemment, le cuivre à partir du-
quel l’allage a été élaboré est un cuivre non
désoxydée, très sensible par conséquent aux
atmosphères réductrices. En paroxysme, le sou-
dage oxy-arc-en-ligne doit être évité.

De tous les alliages à l’arc électrique, seul le procédé TIG est susceptible de donner
des soudures correctes. On peut souder éga-
lement par résistance, avec les mêmes réglages
que pour le cuivre pur puisque la conductivité
est proche de la même.

4.2 CUIVRE AU CADMIUM

Dans la proportion de 0.7 à 1 %, le cad-
mium améliore notablement les caractéris-
tiques mécaniques du cuivre mais au prix d’une léger
chute de la conductivité (88 % IACS à l’état
écroué). Il n’élève la température de recuit.

Le cuivre au cadmium se saute comme le
cuivre désoxydée avec, toutefois, un risque de
partie de cadmium par évaporation. Le procédé
TIG donne de bons résultats après que les
paramètres de soudage ont été adaptés à la
composition de l’alliage au moyen d’essais préal-
ables. Le procédé MIG est déconseillé.

Le soudage par résistance est facilité par la
résistivité du Cu-Cd. Toutefois les filets sont
différents à souder en bout et leurs soudures
sont souvent poreuses.

4.3 CUIVRE AU TELLURE

A la teneur de 0.3 à 0.7 %, le tellure forme
avec le cuivre une phase séparée qui, dissé-
minée dans la matière, favorise la fragmenta-
tion des copeaux à l’alliage. Cet alliage allie
ainsi une conductivité élevée à une excellente
aptitude au décotactage.

En raison de la volatilité du tellure, l’alliage
Cu-Te ne peut être assemblé que par fraisage
à l’argent ou à l’étain. Son soudage est à éviter.

4.4 CUIVRE AU CHROME

Une addition de 0.5 à 0.9 % de chrome per-
met d’obtenir un alliage à durcissement struc-
tural après un traitement comportant une trempe
à l’eau entre 975 et 1 100 °C suivi d’un revenu
entre 450 et 475 °C.

L’alliage traité et écoulé dur, le cuivre au
chrome combine une conductivité encore bonne
(79 % IACS) avec des caractéristiques mécani-
ques remarquables : R = 520 N/mm², E =
480 N/mm², A % = 2 à 5, Hs = 140. À 400 °C
on trouve encore R = 180 N/mm² alors que pour
le cuivre pur on tombe à 100.

Le cuivre au chrome est très utilisé pour
fabriquer les électrodes de soudage par résis-
tance.

La formation d’oxyde réfractaire à haute
température est une des difficultés du soudage
du cuivre au chrome. Elle peut être surmon-
tée en adoptant les procédés sous gaz inerte,
le procédé TIG principalement, ou le soudage
par résistance.

Le traitement thermique doit être effectué
après le soudage.
4.5 CUIVRE AU BÉRYLIUM

Cet alliage à 1.8-2.2% de beryllium n’a qu’une conductivité de 25% IACS à l’état trempé et revenu. En revanche il présente des caractéristiques mécaniques comparables à celles des aciers alliés à haute résistance. En outre, il résiste bien à la fatigue et à la corrosion.

Le soudage faisant disparaître l’effet du traitement, celui-ci sera pratiqué après soudage. On obtiendra alors les caractéristiques suivantes sur produits étirés ou laminés.

L’oxyde de beryllium étant très réfractaire (2750°C) et se formant facilement dès qu’on chauffe l’alliage en présence d’oxygène on devra l’éliminer par un moyen mécanique avant de commencer à souder. Le procédé de soudage sera choisi de telle façon que l’oxyde ne se reforme pas en cours d’assemblage d’autant qu’on ne dispose pas de flux parfaitement efficace.

En raison de ce qui précède, le soudage au chatouneau est à éviter. Par contre le soudage à l’arc avec électrode de carbone et baguette enrobée donne de bons résultats s’il est mené rapidement et si les gaz dégagés par l’enrobage sont susceptibles de protéger le bain.

L’arc électrique avec électrode métallique enrobée a donné des résultats acceptables mais les procédés TIG et MIG sont certainement les mieux adaptés au soudage du cuivre au beryllium.

En soudage TIG, le matériau employé, la préparation des bords et le mode opératoire sont identiques à ceux décrits pour le cuivre désoxydé non allié. Seuls, les paramètres de soudage doivent être adaptés à la composition de l’alliage au moyen d’essais préalables.

Les cuivres à 2% de beryllium se soudent bien par le procédé MIG en utilisant un fil électrode de même composition. Il existe des alliages à plus faible teneur en beryllium (0.4 à 0.5%) qui sont moins faciles à souder et qui exigent un fil d’asport plus riche en beryllium pour composer les pertes de métal.

La conductivité du cuivre au beryllium étant moindre que celle du cuivre allié, le soudage par résistance est facile.

Par points ou à la meule, le cuivre au beryllium sera soudé avant traitement thermique. Après soudage et traitement, les points peuvent atteindre une résistance mécanique de 900 N/mm². Le courant secondaire doit être de forte intensité et de durée très courte, de l’ordre du centième de seconde dans certains cas. Il existe une pression critique aux électrodes que l’on devra surveiller.